Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258903

RESUMO

Suppression of glucagon hypersecretion can normalize hyperglycemia during type 1 diabetes (T1D). Activating erythropoietin-producing human hepatocellular receptor type-A4 (EphA4) on α cells reduced glucagon hypersecretion from dispersed α cells and T1D islets from both human donor and mouse models. We synthesized a high-affinity small molecule agonist for the EphA4 receptor, WCDD301, which showed robust plasma and liver microsome metabolic stability in both mouse and human preparations. In islets and dispersed islet cells from nondiabetic and T1D human donors, WCDD301 reduced glucagon secretion comparable to the natural EphA4 ligand, Ephrin-A5. In diabetic NOD and streptozotocin-treated mice, once-daily oral administration of WCDD301 formulated with a time-release excipient reduced plasma glucagon and normalized blood glucose for more than 3 months. These results suggest that targeting the α cell EphA4 receptor by sustained release of WCDD301 is a promising pharmacologic pathway for normalizing hyperglycemia in patients with T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Hiperglicemia , Humanos , Animais , Camundongos , Camundongos Endogâmicos NOD , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucagon , Receptor EphA4 , Hiperglicemia/tratamento farmacológico , Receptores da Eritropoetina
2.
Nat Aging ; 4(1): 95-109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066314

RESUMO

Aging is a common risk factor in neurodegenerative disorders. Investigating neuronal aging in an isogenic background stands to facilitate analysis of the interplay between neuronal aging and neurodegeneration. Here we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs) in Huntington's disease identified pathways involving RCAN1, a negative regulator of calcineurin. Notably, RCAN1 protein increased with age in reprogrammed MSNs as well as in human postmortem striatum and RCAN1 knockdown rescued patient-derived MSNs of Huntington's disease from degeneration. RCAN1 knockdown enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, leading to TFEB's nuclear localization by dephosphorylation. Furthermore, G2-115, an analog of glibenclamide with autophagy-enhancing activities, reduced the RCAN1-calcineurin interaction, phenocopying the effect of RCAN1 knockdown. Our results demonstrate that targeting RCAN1 genetically or pharmacologically can increase neuronal resilience in Huntington's disease.


Assuntos
Calcineurina , Doença de Huntington , Humanos , Idoso , Calcineurina/genética , Doença de Huntington/genética , Envelhecimento/genética , Fatores de Transcrição/metabolismo , Corpo Estriado/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Musculares/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
3.
FEBS Open Bio ; 13(8): 1434-1446, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392453

RESUMO

Neutrophils are an essential component of the innate immune system; however, uncontrolled neutrophil activity can lead to inflammation and tissue damage in acute and chronic diseases. Despite inclusion of neutrophil presence and activity in clinical evaluations of inflammatory diseases, the neutrophil has been an overlooked therapeutic target. The goal of this program was to design a small molecule regulator of neutrophil trafficking and activity that fulfilled the following criteria: (a) modulates neutrophil epithelial transmigration and activation, (b) lacks systemic exposure, (c) preserves protective host immunity, and (d) is administered orally. The result of this discovery program was ADS051 (also known as BT051), a low permeability, small molecule modulator of neutrophil trafficking and activity via blockade of multidrug resistance protein 2 (MRP2)- and formyl peptide receptor 1 (FPR1)-mediated mechanisms. ADS051, based on a modified scaffold derived from cyclosporine A (CsA), was designed to have reduced affinity for calcineurin with low cell permeability and, thus, a greatly reduced ability to inhibit T-cell function. In cell-based assays, ADS051 did not inhibit cytokine secretion from activated human T cells. Furthermore, in preclinical models, ADS051 showed limited systemic absorption (<1% of total dose) after oral administration, and assessment of ADS051 in human, cell-based systems demonstrated inhibition of neutrophil epithelial transmigration. In addition, preclinical toxicology studies in rats and monkeys receiving daily oral doses of ADS051 for 28 days did not reveal safety risks or ADS051-related toxicity. Our results to date support the clinical development of ADS051 in patients with neutrophil-mediated inflammatory diseases.


Assuntos
Inflamação , Neutrófilos , Humanos , Ratos , Animais , Inflamação/tratamento farmacológico
4.
Clin Transl Immunology ; 12(6): e1455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360982

RESUMO

Objectives: Inflammasomes induce maturation of the inflammatory cytokines IL-1ß and IL-18, whose activity is associated with the pathophysiology of a wide range of infectious and inflammatory diseases. As validated therapeutic targets for the treatment of acute and chronic inflammatory diseases, there has been intense interest in developing small-molecule inhibitors to target inflammasome activity and reduce disease-associated inflammatory burden. Methods: We examined the therapeutic potential of a novel small-molecule inhibitor, and associated derivatives, termed ADS032 to target and reduce inflammasome-mediated inflammation in vivo. In vitro, we characterised ADS032 function, target engagement and specificity. Results: We describe ADS032 as the first dual NLRP1 and NLRP3 inhibitor. ADS032 is a rapid, reversible and stable inflammasome inhibitor that directly binds both NLRP1 and NLRP3, reducing secretion and maturation of IL-1ß in human-derived macrophages and bronchial epithelial cells in response to the activation of NLPR1 and NLRP3. ADS032 also reduced NLRP3-induced ASC speck formation, indicative of targeting inflammasome formation. In vivo, ADS032 reduced IL-1ß and TNF-α levels in the serum of mice challenged i.p. with LPS and reduced pulmonary inflammation in an acute model of lung silicosis. Critically, ADS032 protected mice from lethal influenza A virus challenge, displayed increased survival and reduced pulmonary inflammation. Conclusion: ADS032 is the first described dual inflammasome inhibitor and a potential therapeutic to treat both NLRP1- and NLRP3-associated inflammatory diseases and also constitutes a novel tool that allows examination of the role of NLRP1 in human disease.

5.
Res Sq ; 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37214956

RESUMO

Aging is a common risk factor in neurodegenerative disorders and the ability to investigate aging of neurons in an isogenic background would facilitate discovering the interplay between neuronal aging and onset of neurodegeneration. Here, we perform direct neuronal reprogramming of longitudinally collected human fibroblasts to reveal genetic pathways altered at different ages. Comparative transcriptome analysis of longitudinally aged striatal medium spiny neurons (MSNs), a primary neuronal subtype affected in Huntington's disease (HD), identified pathways associated with RCAN1, a negative regulator of calcineurin. Notably, RCAN1 undergoes age-dependent increase at the protein level detected in reprogrammed MSNs as well as in human postmortem striatum. In patient-derived MSNs of adult-onset HD (HD-MSNs), counteracting RCAN1 by gene knockdown (KD) rescued HD-MSNs from degeneration. The protective effect of RCAN1 KD was associated with enhanced chromatin accessibility of genes involved in longevity and autophagy, mediated through enhanced calcineurin activity, which in turn dephosphorylates and promotes nuclear localization of TFEB transcription factor. Furthermore, we reveal that G2-115 compound, an analog of glibenclamide with autophagy-enhancing activities, reduces the RCAN1-Calcineurin interaction, phenocopying the effect of RCAN1 KD. Our results demonstrate that RCAN1 is a potential genetic or pharmacological target whose reduction-of-function increases neuronal resilience to neurodegeneration in HD through chromatin reconfiguration.

6.
Nat Neurosci ; 25(11): 1420-1433, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303071

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder with adult-onset clinical symptoms, but the mechanism by which aging drives the onset of neurodegeneration in patients with HD remains unclear. In this study we examined striatal medium spiny neurons (MSNs) directly reprogrammed from fibroblasts of patients with HD to model the age-dependent onset of pathology. We found that pronounced neuronal death occurred selectively in reprogrammed MSNs from symptomatic patients with HD (HD-MSNs) compared to MSNs derived from younger, pre-symptomatic patients (pre-HD-MSNs) and control MSNs from age-matched healthy individuals. We observed age-associated alterations in chromatin accessibility between HD-MSNs and pre-HD-MSNs and identified miR-29b-3p, whose age-associated upregulation promotes HD-MSN degeneration by impairing autophagic function through human-specific targeting of the STAT3 3' untranslated region. Reducing miR-29b-3p or chemically promoting autophagy increased the resilience of HD-MSNs against neurodegeneration. Our results demonstrate miRNA upregulation with aging in HD as a detrimental process driving MSN degeneration and potential approaches for enhancing autophagy and resilience of HD-MSNs.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Animais , Doença de Huntington/patologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Autofagia , MicroRNAs/genética , Progressão da Doença , Modelos Animais de Doenças
8.
J Med Chem ; 63(13): 7033-7051, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32506913

RESUMO

Mutations in the mitochondrial fusion protein mitofusin (MFN) 2 cause the chronic neurodegenerative condition Charcot-Marie-Tooth disease type 2A (CMT2A), for which there is currently no treatment. Small-molecule activators of MFN1 and MFN2 enhance mitochondrial fusion and offer promise as therapy for this condition, but prototype compounds have poor pharmacokinetic properties. Herein, we describe a rational design of a series of 6-phenylhexanamide derivatives whose pharmacokinetic optimization yielded a 4-hydroxycyclohexyl analogue, 13, with the potency, selectivity, and oral bioavailability of a preclinical candidate. Studies of 13 cis- and trans-4-hydroxycyclohexyl isostereomers unexpectedly revealed functionality and protein engagement exclusively for the trans form, 13B. Preclinical absorption, distribution, metabolism, and excretion (ADME) and in vivo target engagement studies of 13B support further development of 6-phenylhexanamide derivatives as therapeutic agents for human CMT2A.


Assuntos
Amidas/química , Amidas/farmacologia , Desenho de Fármacos , GTP Fosfo-Hidrolases/metabolismo , Doenças Mitocondriais/tratamento farmacológico , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Amidas/farmacocinética , Amidas/uso terapêutico , Animais , Camundongos , Estereoisomerismo , Especificidade por Substrato , Distribuição Tecidual
9.
ACS Med Chem Lett ; 7(4): 374-8, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27096044

RESUMO

The ATPase subunit of DNA gyrase B is an attractive antibacterial target due to high conservation across bacteria and the essential role it plays in DNA replication. A novel class of pyrazolopyridone inhibitors was discovered by optimizing a fragment screening hit scaffold using structure guided design. These inhibitors show potent Gram-positive antibacterial activity and low resistance incidence against clinically important pathogens.

10.
J Med Chem ; 58(21): 8503-12, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26460684

RESUMO

The emergence and spread of multidrug resistant bacteria are widely believed to endanger human health. New drug targets and lead compounds exempt from cross-resistance with existing drugs are urgently needed. We report on the discovery of azaindole ureas as a novel class of bacterial gyrase B inhibitors and detail the story of their evolution from a de novo design hit based on structure-based drug design. These inhibitors show potent minimum inhibitory concentrations against fluoroquinolone resistant MRSA and other Gram-positive bacteria.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , DNA Girase/metabolismo , Indóis/farmacologia , Staphylococcus aureus Resistente à Meticilina/enzimologia , Inibidores da Topoisomerase II/farmacologia , Ureia/farmacologia , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/enzimologia , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Indóis/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Modelos Moleculares , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Inibidores da Topoisomerase II/química , Ureia/análogos & derivados
11.
ACS Med Chem Lett ; 6(10): 1080-5, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26487916

RESUMO

Antibacterials with a novel mechanism of action offer a great opportunity to combat widespread antimicrobial resistance. Bacterial DNA Gyrase is a clinically validated target. Through physiochemical property optimization of a pyrazolopyridone hit, a novel class of GyrB inhibitors were discovered. Guided by structure-based drug design, indazole derivatives with excellent enzymatic and antibacterial activity as well as great animal efficacy were discovered.

12.
ChemMedChem ; 9(8): 1638-54, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24981721

RESUMO

N-Substituted trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines are a class of pure opioid receptor antagonists with a novel pharmacophore. This opioid receptor antagonist pharmacophore was used as a lead structure to design and develop several interesting and useful opioid receptor antagonists. In this review we describe: 1) early SAR studies that led to the discovery of LY255582 and analogues that are nonselective opioid receptor antagonists developed for the treatment of obesity; 2) the discovery and commercialization of LY246736 (alvimopan; ENTEREG®), a peripherally selective opioid receptor antagonist that accelerates the time to upper and lower GI recovery following surgeries that include partial bowel resection with primary anastomosis; and 3) the discovery and development of the potent and selective κ opioid receptor antagonist JDTic and analogues as potential pharmacotherapies for treating depression, anxiety, and substance abuse (nicotine, alcohol, and cocaine). In addition, the use of JDTic for obtaining the X-ray structure of the human κ opioid receptor is discussed.


Assuntos
Antagonistas de Entorpecentes/química , Piperidinas/química , Receptores Opioides/química , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Antagonistas de Entorpecentes/metabolismo , Piperidinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Opioides/metabolismo , Relação Estrutura-Atividade
13.
J Pharmacol Exp Ther ; 342(3): 799-807, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22700431

RESUMO

N,N-diethyl-4-(5-hydroxyspiro[chromene-2,4'-piperidine]-4-yl) benzamide (ADL5859) and N,N-diethyl-3-hydroxy-4-(spiro[chromene-2,4'-piperidine]-4-yl)benzamide (ADL5747) are novel δ-opioid agonists that show good oral bioavailability and analgesic and antidepressive effects in the rat and represent potential drugs for chronic pain treatment. Here, we used genetic approaches to investigate molecular mechanisms underlying their analgesic effects in the mouse. We tested analgesic effects of ADL5859 and ADL5747 in mice by using mechanical sensitivity measures in both complete Freund's adjuvant and sciatic nerve ligation pain models. We examined their analgesic effects in δ-opioid receptor constitutive knockout (KO) mice and mice with a conditional deletion of δ-receptor in peripheral voltage-gated sodium channel (Nav)1.8-expressing neurons (cKO mice). Both ADL5859 and ADL5747, and the prototypical δ agonist 4-[(R)-[(2S,5R)-4-allyl-2,5-dimethyl-piperazin-1-yl]-(3-methoxyphenyl)methyl]-N,N-diethyl-benzamide (SNC80) as a control, significantly reduced inflammatory and neuropathic pain. The antiallodynic effects of all three δ-opioid agonists were abolished in constitutive δ-receptor KO mice and strongly diminished in δ-receptor cKO mice. We also measured two other well described effects of δ agonists, increase in locomotor activity and agonist-induced receptor internalization by using knock-in mice expressing enhanced green fluorescence protein-tagged δ receptors. In contrast to SNC80, ADL5859 and ADL5747 did not induce either hyperlocomotion or receptor internalization in vivo. In conclusion, both ADL5859 and ADL5747 showed efficient pain-reducing properties in the two models of chronic pain. Their effects were mediated by δ-opioid receptors, with a main contribution of receptors expressed on peripheral Nav1.8-positive neurons. The lack of in vivo receptor internalization and locomotor activation, typically induced by SNC80, suggests agonist-biased activity at the receptor for the two drugs.


Assuntos
Benzamidas/farmacologia , Benzopiranos/farmacologia , Locomoção/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Receptores Opioides delta/metabolismo , Compostos de Espiro/farmacologia , Analgesia/métodos , Analgésicos Opioides/agonistas , Animais , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Humanos , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Locomoção/genética , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Medição da Dor/métodos , Piperazinas/farmacologia , Receptores Opioides delta/genética
14.
Mov Disord ; 26(7): 1225-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21465551

RESUMO

In Parkinson's disease (PD), dyskinesia develops following long-term treatment with 3,4-dihydroxyphenylalanine (L-dopa). Given the prominent role of the opioid system in basal ganglia function, nonselective opioid receptor antagonists have been tested for antidyskinetic efficacy in the clinic (naltrexone and naloxone), although without success. In the current study, ADL5510, a novel, orally active opioid antagonist with mu opioid receptor selectivity, was examined in L-dopa-treated 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) macaques. Antidyskinetic effects were compared with those of naltrexone. Parkinsonian monkeys with established L-dopa-induced dyskinesia (LID) received acute challenges with L-dopa (subcutaneously) in combination with either vehicle, ADL5510 (0.1, 1, 3 or 10 mg/kg by mouth), or naltrexone (1, 3, or 10 mg/kg subcutaneously). Following treatments, behavior was monitored for 6 hours. Parameters assessed were total activity, parkinsonism, and dyskinesia. ADL5510 (1, 3, and 10 mg/kg) reduced activity and LID (chorea and dystonia) without affecting the antiparkinsonian benefits of L-dopa. The antidyskinetic effect of ADL5510 showed a U-shaped dose-response. It was inactive at 0.1 mg/kg, efficacious at 1 and 3 mg/kg (72% and 40% reductions, respectively), and then less effective at 10 mg/kg. The quality of ON time produced by L-dopa was improved, as indicated by a reduction in the percentage of ON time spent experiencing disabling dyskinesia (70% and 61% reductions with 1 and 3 mg/kg, respectively, compared with L-dopa). Naltrexone, in contrast, did not alleviate LID or affect the antiparkinsonian actions of L-dopa. Mu-selective opioid antagonists have the potential to form the basis of novel antidyskinetic therapies for PD.


Assuntos
Discinesia Induzida por Medicamentos/tratamento farmacológico , Levodopa/toxicidade , Antagonistas de Entorpecentes/farmacologia , Transtornos Parkinsonianos/tratamento farmacológico , Receptores Opioides mu/antagonistas & inibidores , Animais , Antiparkinsonianos/toxicidade , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Interações Medicamentosas , Feminino , Humanos , Macaca fascicularis , Masculino , Naltrexona/farmacologia
15.
Methods Mol Biol ; 685: 3-25, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20981516

RESUMO

High-throughput chemistry (HTC) is approaching its 20-year anniversary. Since 1992, some 5,000 chemical libraries, prepared for the purpose of biological investigation and drug discovery, have been published in the scientific literature. This review highlights the key events in the history of HTC with emphasis on library design. A historical perspective on the design of screening, targeted, and optimization libraries and their application is presented. Design strategies pioneered in the 1990s remain viable in the twenty-first century.


Assuntos
Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas , Descoberta de Drogas/história , Avaliação Pré-Clínica de Medicamentos , História do Século XX , História do Século XXI , Humanos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/história , Bibliotecas de Moléculas Pequenas/farmacologia
17.
Bioorg Med Chem Lett ; 20(1): 387-91, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19919895

RESUMO

A lead optimization campaign in our previously reported sulfamoyl benzamide class of CB(2) agonists was conducted to improve the in vitro metabolic stability profile in this series while retaining high potency and selectivity for the CB(2) receptor. From this study, compound 14, N-(3,4-dimethyl-5-(morpholinosulfonyl)phenyl)-2,2-dimethylbutanamide, was identified as a potent and selective CB(2) agonist exhibiting moderate in vitro metabolic stability and oral bioavailability. Compound 14 demonstrated in vivo efficacy in a rat model of post-surgical pain.


Assuntos
Compostos de Anilina/química , Benzamidas/química , Receptor CB2 de Canabinoide/agonistas , Sulfonamidas/química , Compostos de Anilina/síntese química , Compostos de Anilina/farmacocinética , Animais , Benzamidas/síntese química , Benzamidas/farmacocinética , Humanos , Microssomos Hepáticos/metabolismo , Dor/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética
18.
Open Med Chem J ; 3: 8-13, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-19966921

RESUMO

A series of imidazopyrimidine derivatives with the general formula I was synthesized and identified as potent inhibitors of iNOS dimer formation, a prerequisite for proper functioning of the enzyme. Stille and Negishi coupling reactions were used as key steps to form the carbon-carbon bond connecting the imidazopyrimidine core to the central cycloalkenyl, cycloalkyl and phenyl ring templates.

19.
J Chromatogr A ; 1216(45): 7708-14, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19801151

RESUMO

Chiral recognition and resolution of methanobenzazocines was investigated by HPLC using polysaccharide, Pirkle-type, native and derivatized beta-cyclodextrin chiral stationary phases. Enantioseparation of phenyl substituted 2,6-methanobenzazocines was achieved with multiple chiral stationary phases throughout the classes described. Chiral resolution of the enantiomers of 1,5-methano-3-methyl-6-oxo-1,2,3,4,5,6-hexahydro-3-benzazocine was produced on both polysaccharide and Pirkle-type phases. In the case of 1,5-methano-3-methyl-6-phenyl-1,2,3,4,5,6-hexahydro-3-benzazocine only a dinitrophenyl substituted beta-cyclodextrin produced a separation of enantiomers.


Assuntos
Benzomorfanos/química , Cromatografia Líquida de Alta Pressão/métodos , Estereoisomerismo
20.
Curr Pharm Des ; 15(29): 3345-66, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19860684

RESUMO

Non-selective cannabinoid ligands display a wide range of physiological effects including analgesic, anti-inflammatory, anti-convulsive and immuno-suppressive activities. A separation between therapeutic effects and undesirable CNS side effects may be accomplished by increasing the selectivity for the CB(2) receptor over the CB(1) receptor. There is considerable interest in developing new cannabimimetic compounds possessing preferentially high affinity for the CB(2) receptor as potential novel therapeutics for the treatment of inflammation and chronic pain. This review will summarize the literature on selective cannabinoid CB(2) receptor agonists from 2007 to the present, with special emphasis on SAR and medicinal chemistry strategies to improve physicochemical properties, metabolic stability and oral bioavailabilty of these inherently lipophilic ligands. Incorporating physicochemical property filters early in hit identification, concurrent screening of liver microsomal stability and addressing metabolic hot-spots through structural modifications or bio-isosteric replacements during lead optimization led to a number of structurally diverse CB(2) agonists with good oral bioavailability and in vivo efficacy in rodent models of pain.


Assuntos
Canabinoides/farmacologia , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/efeitos dos fármacos , Animais , Canabinoides/química , Canabinoides/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Isomerismo , Ligantes , Relação Quantitativa Estrutura-Atividade , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...